Process Level Moderate Deviations for Stabilizing Functionals
نویسندگان
چکیده
Functionals of spatial point process often satisfy a weak spatial dependence condition known as stabilization. In this paper we prove process level moderate deviation principles (MDP) for such functionals, which is a level-3 result for empirical point fields as well as a level2 result for empirical point measures. The level-3 rate function coincides with the so-called specific information. We show that the general result can be applied to prove MDPs for various particular functionals, including random sequential packing, birth-growth models, germ-grain models and nearest neighbor graphs.
منابع مشابه
Moderate deviations for stabilizing functionals in geometric probability
The purpose of the present paper is to establish explicit bounds on moderate deviation probabilities for a rather general class of geometric functionals enjoying the stabilization property, under Poisson input and the assumption of a certain control over the growth of the moments of the functional and its radius of stabilization. Our proof techniques rely on cumulant expansions and cluster meas...
متن کاملModerate deviations for diffusions with Brownian potentials
We present precise moderate deviation probabilities, in both quenched and annealed settings, for a recurrent diffusion process with a Brownian potential. Our method relies on fine tools in stochastic calculus, including Kotani’s lemma and Lamperti’s representation for exponential functionals. In particular, our result for quenched moderate deviations is in agreement with a recent theorem of Com...
متن کاملModerate Deviations for Stationary Processes
We obtain asymptotic expansions for probabilities of moderate deviations for stationary causal processes. The imposed dependence conditions are easily verifiable and they are directly related to the data-generating mechanism of the underlying processes. The results are applied to functionals of linear processes and nonlinear time series. We carry out a simulation study and investigate the relat...
متن کاملModerate Deviations Type Evaluation for Integral Functionals of Diffusion Processes
where Ψ and g are smooth functions, ξε t is a “fast” ergodic diffusion whileXε t is a “slow” diffusion type process, κ ∈ (0, 1/2). Under the assumption that g has zero barycenter with respect to the invariant distribution of the fast diffusion, we derive the main result from the moderate deviation principle for the family (ε−κ ∫ t 0 g(ξ ε s)ds)t≥0, ε ↘ 0 which has an independent interest as wel...
متن کاملModerate deviations of inhomogeneous functionals of Markov processes and application to averaging
In this paper, we study the moderate deviation principle of an inhomogeneous integral functional of a Markov process ( s) which is exponentially ergodic, i.e. the moderate deviations of 1 √ h( ) ∫ : 0 f(s; s= ) ds; in the space of continuous functions from [0; 1] to R, where f is some R-valued bounded function. Our method relies on the characterization of the exponential ergodicity by Down– Mey...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006